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Using the method of matched asymptotic expansions, the interaction between 
axisymmetric laminar boundary layers and inviscid supersonic external flows is 
investigated in the limit of large Reynolds numbers. The resulting triple-deck 
equations are solved numerically for two different cases of body shapes: a cylinder- 
cone configuration and a configuration consisting of two concentric cylinders which 
are connected by a smooth curve. Solutions to the linearized as well as the fully 
nonlinear equations are presented. 

1. Introduction 
The general problem of viscous-inviscid interacting flows is of great importance 

in the theory of viscous flows in general and aerodynamics in particular. Although 
the problem has been extensively studied over the years, i t  has been only within the 
last decade that a rational theory has been developed which explains the complex 
nature of the viscous flow in this interaction region. I n  the case of laminar boundary 
layers the ' triple-deck ' theories developed by Stewartson & Williams (1969) for 
supersonic flows, and Stewartson (1969) and Messiter (1970) for incompressible flows, 
play an essential role in the elucidation of the details of the flowfield. Since its original 
formulation, this theory has been applied to numerous interaction problems, many 
of which have been summarized in the review articles by Stewartson (1974, 1980, 
1981), Messiter (1978, 1983), Kluwick (1979) and Smith (1982). As a consequence the 
basic properties of planar interacting flows seem to be well understood a t  present, 
although quantitative results are still lacking for a number of interesting and 
important problems, including for example, mixed transonic flows, owing to the 
computational difficulties associated with such flows. 

In  contrast, our understanding of three-dimensional viscous-inviscid interactions 
is much less complete. To date only a limited number of studies are available for 
three-dimensional interactions, owing, in part, to the numerical difficulties associated 
with such studies. The asymptotic triple-deck theory for two-dimensional flows has 
been generalized by Smith, Sykes & Brighton (1977) to account for three-dimensional 
disturbance of a Blasius boundary layer by considering a three-dimensional hump on 
an otherwise-flat surface. However, owing to the complexity of the inviscid outer-flow 
solution they were only able to obtain solutions to the linearized version of the 
governing equations. To study nonlinear effects, Sykes (1980) had to  adopt a 
simplified model for the response of the outer flow to the displacement effects caused 
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by the boundary layer which in essence was based on a solution relevant to internal 
flows derived by Smith (1976). Nonlinear solutions that take into account the correct 
coupling between the boundary layer and the inviscid outer flow have been carried 
out so far only for swept-wing configurations (Vatsa & Werle 1977; Gittler 1984). 

A second class of problems in which three-dimensional effects are of importance 
concerns viscous-inviscid interactions on axisymmetric bodies of revolution. Three 
different physical situations can occur in the study of axisymmetric interactions 
depending on the relationship between the body radius and the characteristic 
boundary-layer thickness. The flow situation most closely resembling that of the 
two-dimensional interaction problem occurs when the body radius is much larger than 
the boundary-layer thickness. Specifically, i t  has been shown by Duck (1984) for 
incompressible flow that when the body radius is of order Re-8, where Re is a 
characteristic Reynolds number of the flow, the lower and main decks of triple-deck 
theory are unchanged from their two-dimensional form while the upper deck is now 
governed by the axisymmetric potential equation. As will be discussed below, a 
similar situation occurs for supersonic external streams, except that in this case the 
upper deck is governed by the axisymmetric wave equation. 

The other two physical problems of interest occur when the body radius is of the 
order of the boundary-layer thickness and when the body radius is much less than 
the boundary-layer thickness. I n  both of these cases the body has become slender 
enough that the curvature effects are no longer negligible in the main and lower decks, 
respectively. Some discussion of the former case is given by Duck (1984) for 
incompressible flow, while the corresponding problems for supersonic mainstreams 
are currently under study. 

Specifically, in this paper we discuss the response of a laminar boundary layer on 
an axisymmetric body of revolution placed in a supersonic mainstream when the body 
radius is of the order Re-:. In  $ 2  the appropriate boundary-value problem is 
formulated, while $3  deals with the asymptotic structure of the solutions far 
upstream. Finally, $04 and 5 are devoted to the numerical and analytical study of 
the flow over bodies of revolution of the cylinder-cone type and the flow over two 
concentric cylinders that  are connected by a smooth surface. 

During the preparation of this paper a related study by Huang & Inger (1983) has 
appeared. In  their study, however, they considered only the linearized version of the 
triple-deck interaction region studied in the present work. More significant, perhaps, 
are their results for the pressure and skin-friction distributions, shown in figures 5 
and 6 of their paper. According to these figures the pressure gradient appears to be 
discontinuous a t  the corner, a result that  we find not to be correct in this study. I n  
addit)ion, the results for the pressure and skin friction have the wrong asymptotic 
behaviour downstream of the corner. As will be pointed out in $2, these discrepancies 
seem to be caused by a mathematical error in equation (15) of their study. 

2. Problem formulation 
In  this study we are concerned with the response of an axisymmetric boundary 

layers which forms on a cylindrical body of radius ti in a uniform supersonic stream 
with velocity Bm due to small distortions on the surface of the cylinder. Let L' denote 
the distance of the distortion from the front of the cylinder and the kinematic 
viscosity in t,he external stream. In what follows i t  will be assumed that the Reynolds 
number Re = B, z/Va, is sufficiently large that 

(1) & = Re-t 
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FIGURE 1. Triple-deck structure of the interaction region. 

can be taken to  be a small perturbation parameter. Furthermore, it will be assumed 
that 

O(1) (2) 

r"p = 1 +O(€2). (3) 

- d  a=---= 
€3L 

and that the deviations ?-a" from the unperturbed cylindrical surface are of order 

Under these conditions the flow region affected by the viscous-inviscid interaction 
process develops a triple-deck structure in the limit E + O  considered here, as shown 
schematically in figure 1. 

Owing to the scalings (2) and (3), both the boundary-layer thickness and the 
displacement of the boundary layer are sufficiently small that axisymmetric effects 
inside the undisturbed as well as the disturbed boundary layer are unimportant to 
leading order. Hence to  a first approximation all axisymmetric effects are restricted 
to the flow outside of the boundary layer. Considering first this upper-deck region 
(see figure 1 ), we introduce the following non-dimensional variables : 

where 2, r" denote the streamwise and radial coordinates, G, v" the corresponding 
velocity components, and c" the speed of sound. Furthermore it is assumed that the 
field quantities outside the boundary layer can be expanded in asymptotic series of 

( 5 )  

the form 1 u = 1 +ezu,(X, r )  + ..., 
p = e2p,(X,  r )  + . . . , 

v = E ~ v , ( X ,  r )  + ..., 
c = Nzl + e2c , (X,  r )  + . . ., 

where M ,  denotes the Mach number of the undisturbed flow. Substituting (4) and 
( 5 )  into the axisymmetric form of the Navier-Stokes equations yields to leading order 
the governing equations of the upper deck : 

10 Y L M  140 
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Since the interaction process is induced by a distortion of the boundary of the 
cylinder, only outgoing waves are generated by the interaction. Hence the appropriate 
solutions to (6) can be expressed in the form 

u =-p1=-- jm %(X-/3r cosh 6 )  d6, 
4~ n 

1 

E(X-@r  cosh 6 )  cosh 6 dc, 
v1 = GJ* 

(7) 

where@ = (M2, - l)t ,  and %([) is related to  the source-distribution function. Note that 
in contrast with slender-body theory the disturbances of u and v are of the same order 
of magnitude. As a consequence p1 is directly related to u1 as in planar flows, but 
does not contain terms proportional to v;. I n  addition, i t  is possible to derive a 
relationship between the pressure disturbances and the normal velocity component 
a t  the surface of the unperturbed cylinder r = ii (Lighthill 1945; Ward 1948). This 
result forms the basis of the investigation by Huang & Inger (1983). Unfortunately, 
however, they did not recognize the typographical error in equation (83.8) of Ward 
(1955), and thus state the Laplace transform of the function W ( s )  that enters their 
formulation as = (K,  - Ko)/Kl.T Here KO and K,  are the modified Bessel functions 
of 0th and 1st order, respectively. It is hhis error in Huang & Inger (1983) which 
introduces a singularity strong enough to destroy the convergence of the pressure a t  
large distances and leads to their unphysical results. 

As remarked earlier, assumptions (2) and (3) imply that the structure of the flow 
in the boundary layer is the same as in two-dimensional flows to leading order. 
Introducing the stretched distance ym from the unperturbed surface of the cylinder, 

?-ti 
€4 L Ym=-, 

it is easily shown that the solution in the main deck gm = O( 1 )  is identical with that 
of the planar flow, viz 

u = un(ym)+EA1(X) ub(gm)+.**> 

J p = E*P,(X)+ ..., 
where Uo and R, denote the axial velocity and the density distributions in the 
unperturbed boundary layer. 

Finally, the expansions for the lower deck y1 = ym/c = 0(1) are 

’I u = hy,+€u;(X,y , )+ ..., 

I 21 = E 3 V 3 X ,  yl) + . . . , 
p = E2P1(X)+ ... ) 
P = R ~ ( o ) + ~ w ~ , ) + . . . ,  J 

where h = 0.332 just as in the planar case, which follows immediately from (1) and 
the Seban-Bond-Kelly approximation (e.g. Stewartson 1955). 

For simplicity in the numerical computations i t  is convenient to scale as many of 

7 The authors are indebted to one of the referees for pointing out this error in the paper by Huang 
& lngrr 
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p ,  = Cih: 1M2, - ll-ip, 

u; = CBA: IM; - 11-B (T,/T,)tU, 

v: = CahqM2,- 11: (T,/T&v, 

a = cih-f JM2, - 11-z (T,/T,)fU, 

A - - Ca ah 4 lM& - 11-i (T,/T,)aA, 

) 

where G is the Chapman constant occurring in the linear viscosity law 

and T, denotes the non-dimensional wall temperature. Hence the governing equations 
in the lower deck, t o  leading order, reduce to 

I.”/(.“, = C ( m % ) >  

au au dp a2u au av 
ax ay dx a y 2 ’  ax ay u--+v-- = --+- -+- = 0. 

The no-slip conditions require that 

while matching the solution through the main and upper decks, along with the 
condition that disturbances induced by the interaction vanish as x-f- 00, yields the 
following conditions : = + A(x), ~ a, all x, 

u = v = 0  for y =  F(x), F(x)+O as x - r - a ,  (13) 

I u =  y,  x - f - a ,  ally, 

Finally, to simplify the numerical computations, (12)-( 14) are transformed using 
Prandtl’s transposition theorem (e.g. Rosenhead 1963). Introducing the variables 

i t  is easily shown that the boundary-value problem reduces to 
z = y--F(x), w = v-uF’(x), (15) 

u = w = 0  at z = 0 ,  

u-fz as x+--oo, allz, 

Before considering the solution of the boundary-value problem for several choices 
of F(x) we first consider the asymptotic structure of the solution for x+- 00. 



2 86 A .  Kluwick, P .  Qittler and R .  J .  Bodonyi 

I 8 t  
I 

------ - A --.- +------t---i----C 

1 5 10 
a 

FIGURE 2. Dependence of the upstream decay rate k on the body radius a. 

3. Asymptotic structure for x+- 00 

The results derived by Lighthill (1953) and Stewartson & Williams (1969) for planar 
boundary layers suggest that the solutions to (12)-(14) for z-t- oc) can be expressed 
in the form 

u = y+Sekxf’(y)+O(S2), 

v = - 6k ekx f(y) + O(S2), 

m = Sekz+O(62). 

(17)  I 
Substituting (17) into (12)-( 14), it is easily shown that 

and 

where Ai ( 8 )  is the Airy function and KO and K ,  are the modified Bessel functions of 
0th and 1st order respectively. It also follows that k satisfies the relationship 

In the limit a+ 00 the expressions derived so far reduce to the appropriate 

(21) 

(ku):ln (ku) - 3aiAi’(O), (22) 

two-dimensional results; i.e. since K,(ka) +Ko(ka)  as ka+oc), (3.20) gives 

k$ = - 3 Ai‘ (0). 

Similarly, expansion of the dispersion relationship (20) for ka + 0 yields 

which indicates that k+co as a+O. The numerical solution of the dispersion 
relationship (20) is shown in figure 2, and the solution confirms the limiting 
behaviours €or k as a --f 0, oc) . Since k + co as a + 0, the upstream influence vanishes on 
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the lengthscale ~~2 used. Therefore, to  resolve the structure of the interaction process 
in this limit, a different scaling of the interaction region must be considered where 
the body radius scales with the classical boundary-layer thickness as noted in 5 1. 

4. Cylinder-cone configuration : linearized solution 
In  the following it will be assumed that the cylindrical surface of the body is 

composed of aright circular cylinder for x < 0 and a cone of small apex angle a* = O(?) 
for x > 0. Thus 

(23) 
1 a* F ( x )  = axH(x), a = C-ih-:(HL - 1 ) - 4 -  

€2 ' 

where H(x) is the Heaviside step function. On the assumption that a is sufficiently 
small, we can expand the field variables as power series in a in the following manner : 

u(x, 2) = z + au1(x, 2 )  + O(a2), 
w(x, 2) = awl(x, 2) + O(a2),  

P ( X )  = ap,(x) + O(a2) ,  

A(x) = aA1(x) + O(a2), 

m(x) = aml(z) + O(a*),  

where ul, wl, p,, A ,  and m1 satisfy the set of equations 

u1 = w1 = 0 on z = 0 for all x, 

ul+O as x+--00 forallz, 

u,+xH(x)+A,(x) as z+m for all z, 

ml(x-acoshp) dp, 

ml(x-acoshp)coshpdp. 

To eliminate the source function ml(x) the momentum equation (25) is differentiated 
first with respect to z ,  which leads to a differential equation for the shear stress 
r1 = aul/az. Introducing the Fourier transform 

? ( z ; o )  = - 
27c 

rl(x, z )  e-iw5 dx 

for r as well as for all the other field variables, one obtains the following boundary- 
value problem : 

(27) 

? = O  for z - f c o ,  (28) 

a27 
a22 

iwz? = 0, _- 
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Once 7 has been determined from (27) and (28), ji, and x, follow from 
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where, for the linear-ramp problem, 

1 =--- P 
CL 27~(iw)~. 
- 

Evaluation of (27) and (28) for a+ 00 and a-tO yields the following expressions 
- - p , - - iwA ,  as a-tco,  

p ,  - -uw2aIna2, as a+O. - 

Thus the result for plane supersonic flow 

p = -A’ 

is recovered in the limit a+ 00, while the relationship between A and p reduces to 

p = -alnaA”, (32) 
for a+O as in the case of incompressible flow studied by Duck (1984). The solution 
to (27) and (28) can be expressed in the form 

3 Ai [(iw); 23 

2n(iu)jg(w, a )  ’ 

’ l ( w )  = 2n(iw) g ( w ,  a )  ’ 

T ( 2 ; w )  = 

3 Ai’ (0) 

K,(iwa) 
KO( iwa) g(w, a) = 3Ai’ (0) ___ + (iw)b. 

(33) 

The inversion of the Fourier-integral transformation presents no difficulty when x d 0. 
A straightforward application of the residue theorem yields 

i 9 Ai’ (0) 
P l W  = - ___ Q ( k ;  a) ekx, 4kb (34) 

16K0(ka) k k ~  
Q ( k ; a )  = 16KJka) k~-9Ai’(O)K1(ka)’ 

where k is the solution of (20). 
No simple analytical expression for the field variables could be found when 5 > 0. 

Therefore the inversion of the Fourier integral was carried out numerically by means 
of the fast-Fourier-transformation method of Cooley & Tukey (1965). Solutions were 
obtained for a = 0.5, 1 ,  5, 10 and 00. 7 ( x ,  0) and p ( x )  were evaluated at 12288 grid 
points, and in all cases the computations were performed for various different mesh 
sizes Ax in order to obtain sufficient accuracy for small as well as large distances from 
the corner. Comparison of the numerical results and the analytical expression (34) 
at x = 0 showed that the differences were less than 1 % for a = 1, 5 ,  10 and 00, and 
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less than 376 for u = 0.5. Furthermore, comparison of the wall-shear-stress and 
pressure distribution for a = co and the analytical results for plane flow obtained by 
Stewartson (1970a, 6 ,  1971) yielded agreement to 3 decimal places over the whole 
computational domain. 

A further means to check the accuracy of the numerical data is provided by the 
asymptotic structure of the linearized solution as x+ 00. Inspection of(33) shows that 

- U 
p1-5 In (iw) (35) 

for w +O, a fixed. Evaluation of the inverse Fourier integral (e.g. Lighthill 1958) then 
yields the asymptotic result 

(36) P - T  as x + m .  

I n  marked contrast with the two-dimensional case, therefore, the pressure disturbance 
decays to zero as x+ a. This is a direct consequence of the increase of the streamtube 
area downstream of the corner caused by the axial symmetry of the flowfield. Using 
the properties of TI((), w )  for the small values of w ,  

aCl. 

(37) 

The behaviour of the wall-shear-stress distribution for x+ 00 can also be evaluated. 

Here $(x) denotes the digamma function (e.g. Lighthill 1958). 
Comparison between the numerical results and the asymptotic expressions (36) and 

(38) showed excellent agreement. 
It should be noted that (36) can also be derived directly by evaluating (27)-(29) 

for w+O. Consequently, (36) and (38) also hold in the nonlinear case where a = 0(1), 
which is considered in $5. 

Figures 3 and 4 summarize the numerical solutions for a = 0.5, 1 ,  5, 10 and 00. As 
in the case of two-dimensional flows, the slope of the wall-shear-stress distribution 
is discontinuous a t  x = 0, while the slope of the pressure distribution there is con- 
tinuous. An analysis similar to that given by Brilliant & Adamson (1973) for two- 
dimensional transonic flow or direct evaluation of (33) for small a yields 

As can be seen from figure 3, the exponential growth of the pressure disturbances 
upstream of the corner is followed by a much milder increase leading to a maximum 
value followed by a gradual decrease to its unperturbed level. With decreasing value 
of a the maximum disturbance induced by the interaction process decreases and the 
pressure decays more rapidly in agreement with the asymptotic result (34). While 
the pressure disturbance a t  x = 0 is independent of a according to purely inviscid 
theory, viscosity clearly leads to a marked reduction of the interaction pressure even 
for moderate values of a. 

The properties of tht: pressure distribution have two immediate consequences for 
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FIGURE 3. Cylinder-cone configuration : pressure distribution for various 
values of a according to  linear theory. 

-5  

-1 

FIGURE 4. Cylinder-cone configuration : shear-stress distribution for various 
values of a according to linear theory. 

the wall-shear-stress distribution (figure 4). Since the maximum pressure disturbance 
decreases with decreasing body radius a ,  the shear-stress perturbation also decreases 
with decreasing a. As was to be expected (and as will be verified in § 5 ) ,  this indicates 
that axisymmetric boundary layers can sustain larger positive turning angles than 
two-dimensional boundary layers before separation occurs. Furthermore, since the 
pressure gradient is favourable far downstream, the shear-stress disturbance is posi- 
tive for sufficiently large values of x (equation 38), similar to that found in two- 
dimensional subsonic flows. 

5. Cylinder-cone configuration: nonlinear results 
I n  addition to  the linear solutions discussed in $4, solutions to the full nonlinear 

interaction equations (16) have also been obtained. To this end the momentum 
equation is again differentiated with respect to z as in the linear case. Fourier 
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transformation of the resulting relationship and the boundary conditions then leads 
to 

where u* = u - z ,  T* = T -  1,  and 7 is the Fourier transform of T*. 

Similar to  the numerical investigation of two-dimensional interacting flows by 
Burggraf & Duck (1981), (40) and (29) were cast into finite-difference form using 
central differences. The resulting set of equations was then solved iteratively by 
evaluating the right-hand side of (40) from the results obtained from the previous 
iteration. Starting from the linear solution to  (40), the iterations were carried 
out until the corrections AT were less than in absolute value for all meshpoints 
xjr zi. 

Solutions were again obtained for a = 0.5, 1 ,  5, 10 and 00. I n  each case the 
number of meshpoints in the z-direction was 45 and the Fourier transform ? ( z ; w )  
was calculated for 256 discrete values of w equispaced over the interval 
- 128Aw < w < 127Aw. Applicationofthefast-Fourier-transformmethodthenyielded 
~ ( z ,  x) inside the streamwise region - 128Ax < x < 127Ax, where Ax = R/( 128Aw). 
Owing to the slow algebraic decay of T as x +  00, a rather large streamwise extent, of 
the computational domain was needed, even for moderate values of a.  Extensive 
test runs showed that by taking 0.25 < Ax < 0.5 numerical solutions are obtained 
which allow both for sufficient resolution near x = 0 and for the rather long 
streamwise extent necessary owing to the slow algebraic decay of the solution far 
downstream. Therefore the computational domain extended over 0 < y < 22 and 

Numerical computations based on the wall geometry (23) showed that strong 
oscillations occurred in the wall-shear-stress distribution already at  moderately large 
values of the transformed ramp angle a. To eliminate these oscillations, which are 
caused by the discontinuous change of the boundary condition a t  x = 0, a smoothed 
version of the cylinder-cone problem characterized by 

-32(64) < x < 31.85(63.5). 

X 
F = axH(x) (121 > p) ,  F = ,[-.+-+el ( - p  < x < p)  4p 2 4 

and 
- 1 a sinwp 

(42) F = 
2 ~ ( i w ) *  wp 

was considered. Numerical calculations carried out for p = 1 yielded smooth distribu- 
tions of the field quantities over the entire streamwise extent of the computational 
domain for a > 0 (compression corner) as well as 01 < 0 (expansion corner). 

The application of the spectral method outlined so far leads to distributions of the 
wall shear stress and the pressure which do not decay monotonically as x approaches 
the left end of the computational domain, but rather change sign and then start to 
increase again slightly as shown in figure 5 and also as observed by Burggraf & Duck 
(1981). For the case of axisymmetric flows considered here, this behaviour is a direct 
consequence of the asymptotic properties of the solution given by (17) ,  (36) 
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FIGURE 5.  Cylinder-cone configuration given by (41): shear-stress distribution for a = 1 and 
a = 5 :  -----, spectral method; -, modified spectral method; -.-.-, free-interaction solution. 
- -. -. . , asymptotic relationship (38). 

and (38), and the resulting error is therefore inherent in the method. A closer 
investigation of the solution to  the linearized equations, however, indicated that 
the magnitude of this error depends strongly on the accuracy of the numerical 
approximation to the Fourier integral near w = 0, where 7 = 0 and where aT/aw 
exhibits a singularity. This suggests a modification of the standard version of the 
spectral method such that a small correction term is added to the ?-distribution a t  
w = 0 which accounts for the discretization error of the Fourier integral over the 
interval - iAw < w < gAw and which is determined by the requirement that  the 
numerical solution satisfies the asymptotic results for x + co . Since the correction term 
influences the contribution of the interval centred a t  w = 0 to the Fourier integral, 
it gives rise to an additive constant in the wall-shear-stress distribution only. The 
problem of determining the magnitude of the correction term is therefore equivalent 
to the problem of calculating the point x = x, where 7(x, 0) changes its sign and where 
all field variables approximately assume their undisturbed values. The value of x, 
was determined in two steps. First an estimate for x, was obtained by calculating 
the distance 17: a t  which &(x, O)/ax  reached a minimum. Based on this estimate, the 
pressure distribution was evaluated by numerical integration over ar /2z  a t  z = 0 
with p(x,) = 0. Then, for large values of x, the pressure distribution was compared 
with the asymptotic result (36), and, if necessary, the calculation was repeated with 
a slightly changed value of x, until the discrepancy reached a minimum. Finally, an 
estimate of the upstream decay rate k was determined from the numerical data. In  
all cases considered, this value differed from the exact solution to (20) by less than 
1.5 yo. For values of a 2 10 the streamwise extent of the computational domain is not 
large enough even for small values of a for (34) to be applicable. In  these cases, 
therefore, x, had to be derived from the minimum of &(z, O)/a17: alone. Further,nore, 
it should be mentioned that the solution for large values of a represents the most 
severe test of the numerical method also for a different reason. While T ( 0 :  z )  = 0 for 
finite values of a ,  ? itself exhibits a singularity a t  w = 0 for a = 00. As a (‘onsequence, 
the standard version of the spectral method can no longer be used. 
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FIGURE 6. Cylinder-cone configuration given by (41) : pressure distributions for a = 1 and 
various positive cone angles: -------, linear solution. 

7, -1 

FIGURE 7. Cylinder-cone configuation given by (41) wall-shear-stress distributions for a = 1 
and various positive cone angles: -------, linear solution. 

To assess the accuracy of the method used here, the numerical results for a = a3 
were compared with the nonlinear solutions obtained by Rizzetta, Burggraf & Jenson 
(1978), who investigated planar supersonic flow over compression and expansion 
ramps. Although their computations were carried out for p = 0 (sharp corner), good 
agreement was observed for large values of a. In  addition, a different finite-difference 
method using the implicit Crank-Nicolson scheme and a streamwise-marching 
procedure was developed which allowed one to calculate the field variables in the 
free-interaction region upstream of the cone for arbitrary values of a. Comparisons 
with the results obtained by means of the modified spectral method yielded complete 
agreement upstream of the separation point (figure 5). 

Figures 6 and 7 shou the influence of positive ramp angles a on the wall-shear-stress 
and pressure distributions for a fixed value of a = 1. Owing t o  the rounded corner, 
the minimum shear stress 7mln occurs upstream of I = 0 if a is sufficiently small, in 
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5 10 15 -5 O x  
FIGURE 8. Cylinder-cone configuration given by (41) : pressure distributions 

for a = 2.5 and various values of a. 

agreement with the linear solution, which has been included for comparison. As a 
increases, the wall shear stress decreases, the location of T~~~ being almost unaffected 
as long as the flow remains attached. Once a separation bubble has formed for 
a > ais x 3.39, however, the location of rmin is shifted to larger values of x, and finally, 
for large values of a, the minimum wall shear stress occurs downstream of x = 0. 

If the flow is unseparated, the pressure distributions for the various values of a 
are qualitatively similar to  the linear result. For a > ais, however, an inflection point 
develops within the separated region. A similar behaviour appears in two-dimensional 
flows, as shown by Rizzetta et al. (1978), where a plateau region of almost-constant 
pressure is formed for sufficiently large ramp angles. Unfortunately, no converged 
solutions could be obtained for a > 5 using the spectral method. Free-interaction 
solutions with larger separated flow regions were obtained by means of a different 
finite-difference scheme mentioned earlier, and yielded even stronger evidence for the 
formation of a plateau region (e.g. figure 5,  which suggests T + O  as x+oo). The 
analytical implications of these results are currently under investigation. 

Finally, the value of the ramp angle ais x 3.39 a t  incipient separation obtained 
for the case a = 1, should be compared with the result ais x 1.87 for two-dimensional 
flows a = oc) , The strong influence of a on the pressure and shear-stress distributions 
can be seen also from figures 8 and 9, which summarize the effects of the body radius 
on the interaction process for a fixed cone angle a = 2.5. I n  agreement with the trends 
exhibited by the linear solution presented in $4, the wall-shear-stress and pressure 
disturbances as well as the interaction length decrease with decreasing values of a ,  
thus leading to  larger values of ais. 

Results for negative cone angles a < 0 are given in figures 10 and 11.  As can be seen, 
the distributions of the wall shear stress and the pressure are qualitatively similar 
to the linear case for all values of a considered. However, while the location of the 
pressure minimum and the ratio pmi,/p(0) are virtually independent of a,  the data 
for 7 show that the point of maximum wall shear shifts downstream slowly as (a( 
increases. Furthermore, i t  is found that the minimum value of 7 caused by the adverse 
pressure gradient downstream of the corner decreases progressively with a,  indicating 
the possibility that  the boundary layer separates downstream of the corner for 
sufficiently large values of la1 (a  5 - 11.2), in contrast with the two-dimensional 
counterpart of the flow. Clearly, further numerical and analytical efforts are necessary 
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FIGURE 9. Cylinder-cone configuration given by (41) : wall-shear-stress distributions 

for a = 2.5 and various values of a. 

FIGURE 10. Cylinder-cone configuration given by (41) : pressure distributions for 
a = 1 and various negative cone angles. 

to elucidate the properties of axisymmetric flows over compression and expansion 
corners at large cone angles. 

Figure 12 shows streamlines in the lower deck near the corner for a = 1 and a = 5 .  
As first derived by Oswatitsch (1958) using Taylor-series expansion of the full 
Navier-Stokes equations near z = 0, the angle 8 between the wall and the separation 
or reattachment streamline is given by 

tan8  = -3- (43 1 
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FIQURE 1 1. Cylinder-cone configuration given by (41) : wall-shear-stress distributions 
for a = 1 and various negative cone angles. 

PIQURE 12. Cylinder-cone configuration given by (41) : streamlines in 
the lower deck for a = 1, a = 5.  

This relationship can also be obtained directly from the lower-deck equations by 
Taylor-series expansions of u and v, which yield 

as the separation or reattachment point, x = xo, z = 0, is approached, and it was 
found to be in complete agreement with our numerical results. 
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FIGURE 13. Pressure distributions for wall profiles given by (44) according to  linear theory. 

6. Smooth transition between two cylinders 
As an example of an interaction process caused by a finite displacement of the 

incoming stream, the flow over two concentric cylinders of different radii which are 
connected by a smooth curve has been investigated. Specifically the profile chosen 
consisted of two parabolas extending from x = - 1 to x = 1 and from x = 1 to  x = 4 
respectively (figure 14) : 

F = O  ( ~ < - 1 ) ,  

F = $ ~ ( x + l ) ~  ( - 1  < x t  l ) ,  

1 F = -+01(1-8x+x~) (1 < z < 4), (45) 

F = 2 . 5 ~  ( x  2 4). 

Solutions to the linearized equations (27) and ( 2 8 )  are presented in figures 13 and 14. 
Owing to the smaller displacement effects caused by the wall shape (45) as compared 
with the rounded cylinder-cone combination, the disturbances of p and T are 
substantially less in the free-interaction region x < - 1. Furthermore, the pressure 
decays much faster to its unperturbed level, leading, however, in turn to a larger 
shear stress downstream of x = 0. The magnitude of the maximum shear-stress 
perturbation is influenced by two opposing trends. While the tendency to overshoot 
the unperturbed value 7 = 1 becomes more pronounced as a decreases (figures 4, 8) 
the growth rate of T along the convex portion of the wall is larger for large values 
of a. Consequently, the maximum of the wall-shear-stress distribution is largest a t  
intermediate values of a x 5. 

Nonlinear solutions have been also calculated for several values of a when 01 = 4. 
These results a12 summarized in figures 15 and 16. 
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FIGURE 14. Wall-shear-stress distributions for wall profiles given 
by (44) according to linear theory. 

t 
FIQURE 15. Pressure distributions for bodies given by (44) : nonlinear solutions 

for a = 4 and various values of a. 
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t 

FIGURE 16. Wall-shear-stress distributions for bodies given by (44) : nonlinear 
solutions for a = 4 and various values of a. 

7. Concluding remarks 
Viscous-inviscid interactions on axisymmetric bodies flying a t  supersonic speeds 

have been investigated under the assumption that the Reynolds number is large and 
that the characteristic body radius is of the same order of magnitude as the length 
of the interaction region. As a consequence, the governing equations for the flow inside 
the boundary layer are of the same form as in the two-dimensional case to leading 
order, while the axisymmetry of the flow makes itself felt through the relationship 
between the induced pressure and the displacement thickness. 

Detailed numerical and analytical studies have been carried out for bodies of 
revolution of the cylinder-cone type and have revealed several differences from the 
corresponding two-dimensional interaction problem. It was found that the upstream 
interaction region is shorter than that in the two-dimensional case. Also, i t  has been 
shown that the pressure disturbance decays to zero far downstream, in contrast with 
the two-dimensional case, where the pressure approaches a non-zero constant value. 
In  addition, the numerical computations show that the incipient separation angle for 
compressive interactions is significantly higher for the flared cone than for the ramp 
problem. 

I n  the numerical and analytical studies presented here it has also been shown that 
the interaction region decreases in size as the body radius a decreases, and in fact 
vanishes in the limit as a+O in the current scaling. This result implies that a new 
structure for the interaction region will emerge when the body thickness becomes of 
the same order as the boundary-layer thickness, as discussed by Duck (1984) in his 
study of incompressible flows. 

Finally it is noted that the linearized solutions presented here differ significantly 
from these presented by Huang & Inger (1983) owing to  a mathematical error present 
in their formulation. 

One of the authors (A. Kluwick) gratefully acknowledges the hospitality of the 
Department of Engineering Science and Mechanics a t  Virginia Polytechnic Institute 
and State University during the preparation of this work. 
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